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Abstract—With the increasing popularity of Cyber-physical
Systems (CPS), there is a growing need for efficient and reliable
methods for detecting and responding to threats. Federated
Learning (FL) is a distributed Machine Learning (ML) technique
that can be used to train models on data from multiple devices
(i.e., edge devices) while keeping the data local. FL has the
potential to improve the security and privacy of data while also
reducing the training time and cost. Particularly, CNN-based FL
has been shown to be effective for various tasks such as image
classification and object detection. However, selecting suitable
hyperparameters for constructing local ML models in FL is a
significant challenge for practical inference and training on edge
devices. In this paper, we focus on the optimization of CNN-
based federated learning for the task of cyber-physical detection
and we propose employing a novel metaheuristic optimization
algorithm called Honey Badger Algorithm (HBA) for tuning
the hyperparameters in local ML models (FL-HBA). To show
the effectiveness of FL-HBA, we make an evaluation using
an intelligent healthcare case study where we consider Sleep
Apnea (SA) and use the PhysioNet apnea ECG dataset to
diagnose SA. Our results show that the FL-HBA is superior
to a Convolutional Neural Network (CNN) baseline, traditional
ML techniques, and centralized learning models. Furthermore,
we demonstrate that the proposed method for assigning the near-
optimal hyperparameter values for centralized learning models
improves accuracy by 2%.

Index Terms—Cyber-physical Systems (CPS), Federated
Learning (FL), CNN Hyper-parameter, Honey Badger Algorithm
(HBA), Sleep Apnea (SA).

I. INTRODUCTION

Cyber-physical Systems (CPS) applications are pivotal in
leading the 21st-century information technology revolution.
With heterogeneous data produced by interconnected sensors,
the Internet of Things (IoT) has evolved to serve humans more
cognitively, based on the CPS’s architecture and design [1].
Wearable sensors like Electrocardiograms (ECG) and other
Internet-of-Medical-Things (IoMT) devices play an essential
role in collecting medical data in the intelligent healthcare
environment. This data are then analyzed using sophisticated
data analytics facilitated by Machine Learning (ML) to achieve
a wide variety of exciting, intelligent healthcare applications,
like diagnosing diseases and monitoring sleep quality moni-
toring [2].

Formerly, intelligent healthcare systems frequently depend
on centralized ML functions hosted in a data center or the

cloud to perform health analytics and data learning. This
centralized solution has become less practical with the grow-
ing quantity of IoMT devices, health data, and raw data
transmission in modern healthcare networks. In addition, the
confidence in such a third party for data learning or a central-
ized server creates significant patient privacy issues, e.g., data
breach and user information leakage [3].

In light of this, Federated Learning (FL) is an essential solu-
tion for producing high-privacy, low-cost intelligent healthcare
systems [4]. Fundamentally, FL is an ML mechanism that
allows high-quality ML models, such as Sleep Apnea (SA)
detection models, to be trained by aggregating local trained
models from various healthcare at edge devices without shar-
ing their data. A more detailed discussion of FL and IoMT
can be found in a recent work [5]. So far, the majority of
the research that has been done on FL has concentrated on
investigating communication, privacy, and global optimization.
However, only a limited amount of attention has focused on
analyzing the critically important matter of effectively carrying
out local training and inference at the edge devices.

SA is the most prevalent respiratory condition, character-
ized by respiratory difficulties [6]. This disorder’s severity
is determined by the duration of an individual’s inability to
breathe. This condition is referred to as Obstructive Sleep
Apnea (OSA) if the interval is notably long. A subtle form of
this condition is characterized by symptoms such as fatigue
upon awakening and loud snoring. The inhalation muscles
cease functioning for an extended period of time, resulting
in damage to the hippocampal area of the brain and other
catastrophic conditions. It is estimated that around 1 billion of
the world’s 7.3 billion adults between the ages of 30 and 69
have OSA sleep-disordered breathing [7]. Early detection can
be the key to protecting oneself from potentially dangerous
diseases.

Several strategies for identifying apnea using ECG central-
ized data have been developed. One such method is the K-
Nearest Neighbor (KNN) classifier, and the wavelet transform
with linear discriminant [8]. The contemporary method for
diagnosing SA consists of two phases. The ECG centralized
data is preprocessed using a weighted computation approach
to generate appropriate groups for the upcoming phase [6].
Recently, a one-dimensional Convolutional Neural Network
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(CNN) has been proposed as a deep learning technique for
SA detection [9].

Moreover, there are several hyperparameters in deep learn-
ing, and it is difficult to assign the optimum value manually;
hence, automation has been extensively studied. The meta-
heuristic algorithms such as Lemur Optimizer (LO) [10] and
other algorithms [11] have been developed and applied to
enhance the CNN performance by selecting the best hyper-
parameter values.

Honey Badger Algorithm (HBA) [12] is a new metaheuristic
algorithm. HBA is a mathematically efficient search method
that was designed to tackle optimization problems. HBA was
motivated by the sophisticated foraging behavior of honey bad-
gers. In HBA, exploration and exploitation depict the dynamic
search activity of honey badgers, which includes digging and
honey-finding tactics. The HBA offers several benefits over
other algorithms. During a particular search, it is trying to
provide a good balance between exploitation and exploration.
No mathematical derivation of specific data is necessary;
therefore, just a few parameters must be established during the
initialization phase. In addition, it is straightforward, sound-
and-complete, adaptable, expandable, and versatile. Conse-
quently, HBA was used for various optimization challenges,
such as medical image classifications [13]. This paper uses the
HBA to optimize CNN hyperparameters-based FL (HBA-FL)
for SA detection using a decentralized collection of medical
data.

The remainder sections of this paper are structured as
follows. Section II examines related work. Section III ex-
plains the proposed method in depth. Section IV presents the
analytical and empirical findings on the proposed method’s
efficient performance. The conclusion and suggestions for
further research are included in the section V.

II. PRELIMINARIES

The Honey Badger Algorithm (HBA) is an algorithm that
attempts to mimic the natural behaviors of honey badgers in
the wild. This section describes the inspiration and mathe-
matical concepts behind HBA. Besides, it briefly introduces a
Convolutional Neural Network (CNN).

A. Honey Badger Algorithm (HBA)

1) Inspiration: HBA is a new metaheuristic algorithm
proposed by Hashim et al. [12]. HBA replicates the honey
badger’s behavior of hunting and gathering food. The honey
badger either follows the honeyguide bird or digs and smells
to locate food sources. We refer to the first scenario as “honey
mode” and the second scenario as “digging mode.” In the
previous phase, honey badgers directly locate the beehive with
the aid of honeyguide birds. In the latter technique, it utilizes
its sense of smell to approximate the position of prey; upon
arrival, it wanders about the prey to determine the optimal spot
for digging and capturing it.

2) Mathematical Model: HBA is a global optimization
technique since it mathematically includes exploitation and ex-
ploration phases. The HBA’s mathematical steps are described

as follows. Here, the population of potential HBA solutions is
depicted as:

HB =


hb11 hb21 · · · hbD1
hb12 hb22 · · · hbD2

...
... · · ·

...
hb1N hb2N · · · hbDN

 . (1)

where HB is a candidate solutions to a given problem, hbi =
[hb1i , hb

2
i ..., hb

d
i ], ith is a position index of the honey badger.

1) Step 1: The initialization phase. Initialize N honey
badgers and their positions using Eq.(2).

hbi = lbi + rand1()× ((ubi − lbi)), (2)

wherein ubi and lbi are the upper and lower search
domain boundaries, respectively, and hbi is the ith
honey badger position corresponding to a solution space
in a population containing N honey badgers.

2) Step 2: Defining intensity (I). The concentration of
the prey and the prey’s distance from the honey badger
are both factors that influence the intensity of the honey
badger’s attack. Si represents the strength of the prey’s
smell; if the scent is strong, the move will be fast, and
vice versa, as dictated by the Inverse Square Law [14]
and Eq.(5).

Disi = hbprey − hbi (3)

Si = (hbi − hbi+1)
2 (4)

Ii = rand2()× Si

4πDisi
2 (5)

where Disi represents the distance between the position
of the prey hbprey and the badger hbi, and Si represents
the strength of the concentration or source.

3) Step 3: Update density factor. The time-varying ran-
domness is controlled by the density factor (ð), provid-
ing for a consistent move from exploration to exploita-
tion. The randomness is then reduced by updating the
decreasing factor at each iteration, as shown in Eq.(6):

ð = P2× exp
−itr
maxitr

(6)

where P2 is a constant (the default is 2) that decreases
with each iteration. maxitr is a maximum number of
iterations, itr is a current iteration.

4) Step 4: Escaping from the local optimum. Along with
the two succeeding stages, this step is utilized to escape
local optima zones. Specifically, the HBA utilizes a flag
U that adjusts the search direction in order to give honey
badgers with several opportunities to explore the search
space fully.

5) Step 5: Changing the positions of agents. As already
mentioned, the HBA position update process (hbnew)
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consists of two phases: “honey phase or exploitation.”
and “digging phase or exploration”. The following is
explained in further detail:

a) Step 5-1: Digging phase or exploration. Honey
badgers approximate the shape of a Cardioid dur-
ing the digging phase. The modeling of the car-
dioid motion is given in Eq.(7).

hbnew = hbprey + U × ℘× Ii × hbprey
+A× rand3()× ð×Disi
× (cos(2π × rand4())

× (1− cos(2π × rand5())))
(7)

where hbprey is the position of the prey, which is
the best position identified, or the position of the
best solution. ℘ is a constant value (the default
value = 6 ; ℘ ≥ 1 ) indicates the honey badger’s
ability to get food. According to Eq.(3): Disi is the
distance between the prey and the ith honey bad-
ger. Random values rand3(), rand4(), and rand5()
range between [0, 1]. U serves as a flag that affects
the search direction; it is calculated by Eq.(8).

U =

{
−1 rand6() >, 0.5,

1 , Otherwise
(8)

where rand6() generates a random number within
the range [0, 1], during the digging phase, honey
badgers rely heavily on the scent intensity I of
prey hbprey, the distance between the badger and
the prey Disi, and the time-varying search influ-
ence factor. Moreover, the badger’s digging pro-
cess could be interrupted by any disturbance U ,
allowing it to choose an even more advantageous
ambush position.

b) Step 5-2: Honey phase or exploitation. The
scenario in which a honey badger follows a honey
guide bird to a beehive may be reproduced using
Eq.(9).

hbnew = hbprey + U × rand7()× ð×Disi (9)

Where hbnew represents the honey badger’s new
position and hbprey represents the prey’s position,
ð and U are determined using Eqs.(6) and (8),
respectively. Based on the distance information
Disi, Eq.(9) indicates that a honey badger con-
ducts a search near the prey location hbnew that
has been located thus far. Variable search behavior
over time (ð) affects the search at this stage. It
is worth mentioning that all HBA equations were
taken from [12].

B. Convolutional Neural Network (CNN)

In recent years, CNN has acted as a focal point for
artificial intelligence research. It has been utilized well in
voice recognition, Natural Language Processing (NLP), and
image classification [15]. By utilizing a deep neural network,
it is able to reproduce the complex hierarchical structure
of the human vision. CNN is also applied in developing
complex signal analysis systems [16] because of its efficiency
in automated feature extraction. For instance, the authors in
[17] classified ECGs using CNN. The proposed SA detection
model is developed based on modified LeNet-5, an effective
CNN implementation. The modified LeNet-5 given in [9] will
be used in the next section.

III. PROPOSED METHOD

This section introduces the proposed method to optimize
the CNN hyperparameter. First, the dataset is given. Second,
preprocessing is provided. Then, the overall framework of the
proposed method in an FL environment is then shown.

A. Dataset

In this study, the PhysioNet apnea ECG dataset was em-
ployed. This dataset is publicly accessible [18]. Recordings
of 70 people’s single-lead ECG ranging from 401 to 587
minutes are included. Each 1-minute segment of ECG signal
recording was professionally labeled (in the event of apnea, it
was classified as SA; otherwise, it was classified as normal). In
addition, the Apnea-Hypopnea Index (AHI) value was used to
classify these recordings into three main classes (i.e., classes
A, B, and C). Class A indicates that there was at least 100 SA
segments in the recording over the entirety of the recording and
that each hour included at least (AHI ≥ 10) segments. Class B
indicates that the recording had at least 99 SA segments and
that each hour included at least (AHI ≥ 5) segments. Normal
or class C indicates that each hour of the recording included
at least (AHI < 5) segments.

B. Preprocessing

In this study, an automated method is utilized to extract
features from amplitudes as well as RR intervals. This purpose
required a preprocessing approach to acquire the RR intervals
and amplitudes. ECG signal segments labeled with “SA” and
± adjacent segments were extracted for processing because
previous studies [9] found that adjacent segment information
(five 1-minute segments in total) is essential for per-segment
SA detection. We initially utilize the Hamilton technique [19]
to identify the R-peaks, then calculate the distance between
R-peaks (i.e., RR intervals) based on their positions and
extracted the R-peak values (amplitudes). Since the retrieved
RR intervals contained medically uninterpretable points, the
median filter recommended in [9] was utilized. Because the
generated amplitudes and RR intervals did not correspond
to equal time intervals, as needed by the proposed method,
we apply cubic interpolation across 5-minute segments to get
900 points of amplitude and 900 points of RR intervals. Fig.1
comprehensively illustrates the preprocessing approach.
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Fig. 1. Preprocessing scheme for the PhysioNet Apnea-ECG datasets.

C. Adapted HBA for CNN hyperparameters fine-tuning

In this study, a modified leNet-5 is employed as the primary
implementation of the CNN architecture. This reasonably sim-
ple architecture consists of two convolutional layers and two
fully linked layers frequently used in studies as a comparative
design. The baseline and optimization parameters of LeNet-
5 is shown in Table I. The optimal range for the number
of filters in convolution layers Conv1.1D and Conv3.1D is
32 and 64, respectively, and the kernel size is 3, 5, or 7.
Each layer’s activation function utilizes “sigmoid”, “relu”, and
“tanh”, while the batch size is tuned between 10 and 128.
The optimizer employs Adam or Stochastic Gradient Descent
(SGD) with a respective learning rate of 0.01. The open-source
neural network framework Keras is utilized to construct the
local models at the edge devices.

TABLE I
HYPERPARAMETER OF MODIFIED LENET-5 ADAPTED FOR SA

Related Layer Hyperparameter Optimization Value Baseline Output Shape
Input - - - (None, 900, 2)

Conv1.1D Number of filters 32 32
(None, 448, 32)

Conv1.1D Activation function tanh,relu,sigmoid relu
Max pooling2 Pool size 3 3 (None, 149, 32)

Conv3.1D Number of filters 32 32
(None, 73, 64)

Conv3.1D Activation function tanh,relu,sigmoid relu
Max pooling4 Pool size 3 3 (None, 24, 64)

Dropout5 rate 0.4-0.8 0.8 (None, 24, 64)
FC6 units 4-200 32 (None, 32)FC6 Activation function tanh,relu,sigmoid relu

Output Activation function softmax softmax (None, 2)
- Optimizer SGD,Adam Adam -
- Batch size in the training 10 – 128 128 -

The overall framework of the proposed method in an FL en-
vironment to optimize the hyperparameters for modified leNet-
5 local models trained at the edge devices is shown in Fig.2.
First, the selected edge devices are received the initial model
from the server, and then at each edge device, a set of honey
badgers HB (i.e., solutions) are initialized randomly using
Eq.(1). Each solution is considered a different hyperparameter
configuration. Second, the solutions are evaluated using the
modified LeNet-5. In this study, one-dimensional data is used
for the time series. Fully connected layer nodes, strides in the
convolution layer, and feature maps in the basic LeNet-5 may
not be appropriate for the SA detection scenario. Therefore,
we used the modified LeNet-5, which was introduced by [9]
as follows:
• In the feature extraction step, one-dimensional convolu-

tion is used rather than a two-dimensional convolution
operation.

• A dropout layer is added to prevent overfitting between
the fully connected layer and the convolution layer.

• One fully connected layer is kept to reduce the complex-
ity of the network.

• The number of fully connected and the size of strides in
the convolution layer is adjusted.

Third, the positions of the solutions are updated according
to the HBA mechanism and their fitness values. Next, all
updated local trained models from the selected edge devices
are collected by the server and then aggregated using the
Federated Averaging (FedAvg) method [20]. The pseudo-code
of the proposed method’s steps is provided in Algorithm 1.

Fig. 2. Proposed method framework.

IV. RESULTS AND DISCUSSION

This section uses extensive experiments to evaluate the
performance of HBA for SA detection in an FL environment
(FL-HBA). All experiments are carried out on a single widely
used PhysioNet apnea ECG dataset as a case study, and
traditional HBA and five state-of-the-art methods are utilized
to compare comparable studies.

A. Experimental settings

In the field of SA detection using a single-lead ECG signal,
the existing methods primarily rely on extracting suitable
features based on the knowledge and experience of experts
and then building a model utilizing those features, a tech-
nique known as “feature engineering”. Numerous well-known
engineering-based ML techniques, such as Support Vector
Machine (SVM), Logical Regression (LR), and KNN, were
used to evaluate the efficacy of the proposed method. In
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Algorithm 1: FedAvg-HBA for Parameter Optimiza-
tion of CNN Pseudo-code.

1 Input P2, Rounds R, maxitr , ℘, N , Number of edge devices
2 Output weight w.

1: Function CLOUDSERVER:
2: Initialize global model (w0).
3: for round r ∈ R do
4: Dr= set of maximum devices.
5: for each devices d ∈ D do
6: wt + 1=LocalDeviceUpdate(P2, maxitr , ℘, N )
7: end for
8: wt + 1=average the weights
9: end for

10: Return w.
11: Function LocalDeviceUpdate:
12: Initialize the population N .
13: for each solution n ∈ N do
14: Evaluate using modified LeNet-5.
15: end for
16: while itr ≤ maxitr do
17: Sort (N ).
18: Update hbprey
19: Update I using Eq.(5)
20: Update ð using Eq(6)
21: for each solution n ∈ N do
22: Generate flag U
23: if rand() < 0.5 then
24: Update hbnew using Eq(7)
25: else
26: Update hbnew using Eq(9)
27: end if
28: end for
29: for each solution n ∈ N do
30: Evaluate using modified LeNet-5.
31: end for
32: end while Stop criteria satisfied.
33: Return w.

previous studies, various features that may have provided help-
ful information for SA identification have been constructed.
For the feature engineering-based methods in this study, we
used the features (amplitudes: 6 features, RR intervals: 12
features) that substantially influenced SA detection. The HBA
parameters are listed in Table II. A swarm’s maximum number
of iterations is 100, with a maximum size of 10. The P2
parameter is 2.0, and the ℘ parameter is 6.0. It concludes when
the maximum number of iterations is achieved, which serves
as the end condition. The code is available in the FL-HBA
GitHub [21].

TABLE II
PARAMETERS FOR THE PROPOSED METHOD

ID Parameter Value
1 P2 2
2 ℘ 6
3 Number of iterations 100
4 Number of runs 10
5 Population size (N ) 10

B. Comparison with existing schemes

Predicting SA using ECG segment is essential in this
domain since it establishes a stable foundation for diagnosing
patients who may be suffering from SA. For per-segment SA
detection, it is worth mentioning that the proposed method is
compared with the traditional machine learning and non-HBA
methods. As demonstrated in Table III, the whole performance
of the evaluation measures was used for comparison, including

its Area Under the Curve (AUC), specificity, sensitivity, and
accuracy [11]. As seen in Table III, the proposed method with
automated feature extraction performed well with an AUC of
96.1%, a specificity of 92.4%, a sensitivity of 85.7%, and
an accuracy of 88.92%. The total results increased by 1.1%,
2.1%, 2.6%, and 1.3%, respectively, compared to the second-
best performance (i.e., modified LeNet-5). According to the
results, KNN exhibited the lowest predictive performance of
the six methods, probably because the obtained features from
the ECG signal are less spatially related and unsuited for this
case. In summary, the proposed method (i.e., FL-HBA) with
automated feature extraction outperformed the existing feature
engineering method for SA detection.

TABLE III
THE PERFORMANCE OF CONVENTIONAL MACHINE LEARNING IN

COMPARISON TO THE PROPOSED METHOD IN THE DETECTION OF SA

Method AUC Specificity (%) Sensitivity (%) Accuracy (%)
MLP 89.8 87.2 71.3 81.1
KNN 82.6 83.4 68.1 77.5
LR 88.4 84 75.7 80.8
SVM 88.7 84.3 76.9 81.4
LeNet-5 95.0 90.3 83.1 87.6
FL-LeNet-5 93.2 88.8 81.6 85.4
FL-HBA 96.1 92.4 85.7 88.9

C. Ten-fold cross-validation

We employed ten-fold cross-validation to establish the con-
sistency of the proposed method based on the PhysioNet
Apnea ECG dataset. The entire collection (70 recordings) was
randomly divided into ten groups, of which nine were used to
train the classifiers ( LeNet-5, KNN, LR, SVM, and HBA), and
the tenth was used for testing. Fig.3 illustrates the accuracy
of six classifiers’ SA detection accuracy in ten test groups.
As shown in Fig.3 , the accuracy obtained by the LeNet-
5, MLP, KNN, LR, SVM, and HBA ranged from 84.2% to
93.7% (standard deviation ∓ mean, 3.05% ∓ 88.7%), 75.4%
to 89.9% (standard deviation ∓ mean, 4.98% ∓ 81.9%), 72.5%
to 84.8% (standard deviation ∓ mean, 4.53% ∓ 79.3%), 71.7%
to 87.8% (standard deviation ∓ mean, 5.47% ∓ 80.6%), 71.9%
to 88.6% (standard deviation ∓ mean, 5.50% ∓ 81.1%), and
90.71% to 95.29% (standard deviation ∓ mean, 2.01% ∓
91.2% ), respectively. These results indicate that the FL-HBA
with automated feature extraction is very resilient and can
achieve consistent and considerably superior outcomes based
on the PhysioNet Apnea ECG dataset.

Numerous studies on detecting SA based on a signal from
a single lead ECG have been reported thus far, with the
majority of these efforts concentrating on feature engineering.
As mentioned, the proposed method is compared with prior
research that utilized both withheld and published PhysioNet
Apnea-ECG dataset. Table IV illustrates the results of SA
detection utilizing the same dataset. Again, the same train-
ing and testing datasets are used for validation. As proven,
the classification existing works accuracy between [83.4%,
87.6%], which is less than the FL-HBA (with an accuracy
of 88.9%). In summary, the FL-HBA outperforms the existing
methods published in the literature.
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Fig. 3. Results of six classifiers’ SA detection accuracy in ten test groups

TABLE IV
PROPOSED METHOD SA DETECTION PERFORMANCE VS. EXISTING

WORKS.

Reference Classifier Features Specificity (%) Sensitivity (%) Accuracy (%)
[22] Decision fusion Auto encoder 88.4 88.9 83.8
[23] LS-SVM Feature Engineering 88.4 79.5 83.4
[24] HMM-SVM Feature Engineering 88.4 82.6 86.2
[25] LS-SVM Feature Engineering 84.7 84.7 84.7
[9] LeNet-5 CNN 90.3 83.1 87.6
The proposed method FL-HBA CNN 92.4 85.7 88.9

V. CONCLUSION

This paper has proposed the FL-HBA method to optimize
the hyperparameters of local trained CNN models at the
edge devices in an FL environment for SA detection. The
results of the experiments show that the FL-HBA is helpful
for SA detection and that its efficiency is more suitable
than non-HBA and traditional machine learning methods. The
proposed method can also be used to produce SA detection for
use in home healthcare assistance via wearable devices with
improved privacy protection. This is possible because only
a trained model of the edge device is required. As a future
extension, it is necessary to explore the use of FL-HBA on
other CPS and investigate parameters that are related to CNN
architecture and FL settings.
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